IGBT модули

www.elvpr.ru

СИЛОВОЙ IGBT МОДУЛЬ

- одиночный ключ
- кристаллы IGBT IV поколения с вертикальным каналом (trench gate)
- встроенные быстродействующие диоды обратного тока (EmCon Fast diodes)
- сверхнизкие потери в открытом состоянии
- корпус с изолированным основанием

ОСНОВНЫЕ ОБЛАСТИ ПРИМЕНЕНИЯ

- преобразователи частоты
- источники бесперебойного питания
- сварочное оборудование
- ◆ ПСН подвижного состава железных дорог

ОСНОВНЫЕ ПАРАМЕТРЫ

- ♦ V_{CES} = <u>1200 B</u>
- \bullet I_C = **400 A** (T_C = 80 °C)
- ♦ V_{CEsat} = <u>**1.7 В**</u> (тип.)
- ◆ I_{Cpuls} = 800 A (T_C = 80 °C)

МАКСИМАЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

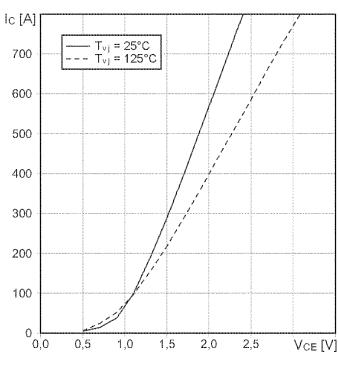
Наименование параметра	Условное обозначение	Значение параметра	Единица измерения	
Напряжение коллектор-эмиттер	V _{CE}	1200	В	
Напряжение затвор-эмиттер	V_{GE}	± 20	Б	
Постоянный ток коллектора				
при T _C = 25 °C	I _C	400		
при T _C = 80 °C		800		
Импульсный ток коллектора (t_p = 1мс, T_C = 65 °C)	I _{Cpuls}	800	Α	
Постоянный прямой ток диода обратного тока	I _F	400		
Повторяющийся импульсный прямой ток диода обратного тока	I _{FRM}	800		
Суммарная мощность рассеивания (T _C = 25 °C), IGBT	P _{tot}	00	Вт	
Максимальная температура перехода	T _j	+ 150	°C	
Температура хранения	T _{stg}	- 40+ 125		
Напряжение изоляции (t = 1 мин.)	V _{isol}	2500	В (эфф)	

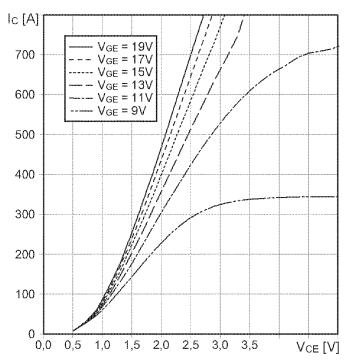
ТЕПЛОВЫЕ ПАРАМЕТРЫ

Наименование параметра	Условное обозначение	Значение параметра	Единица измерения
Тепловое сопротивление переход-корпус, IGBT	R_{thjc}	≤ 0.055	
Тепловое сопротивление переход-корпус, диод обратного тока	R _{thjcD}	≤ 0.125	°С/Вт
Тепловое сопротивление корпус-охладитель, λ_{paste} = 1 Вт/м $\cdot ^{\circ}$ С, на модуль (типовое значение)	R _{thck}	0.01	

ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ (при 25 °C, если не указано иное значение)

	Условное	Значение параметра			Единица
	обозначение	мин.	тип.	макс.	измерения
Статические характеристики					
Пороговое напряжение затвор-эмиттер	V	5.0	5.8	6.5	
$(V_{GE} = V_{CE}, I_C = 16 \text{ mA})$	$V_{GE(th)}$	5.0	5.8	0.5	
Напряжение насыщения коллектор-эмиттер					В
$(V_{GE} = 15 \text{ B}, I_C = 400 \text{ A})$	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
при T _j = 25 °C	V _{CEsat}	-	1.70	2.15	
при Т _j = 125 °C		-	2.00	-	
Ток утечки коллектор-эмиттер (V_{CE} = 1200 B, V_{GE} = 0 B)	la-a	_	_	5.0	мА
при T _j = 25 °C	I _{CES}	_	_	5.0	IVI
Ток утечки затвор-эмиттер (V_{GE} = 20 B, V_{CE} = 0 B)	I _{GES}	ı	-	400	нА
Характеристики на переменном токе					
Входная емкость (V_{CE} = 25 B, V_{GE} = 0 B, f = 1 МГц)	C _{ies}	-	28.0	-	нФ
Обратная переходная емкость			1.1		
$(V_{CE} = 25 B, V_{GE} = 0 B, f = 1 MГц)$	C _{res}	-	1.1	-	
Характеристики переключения (индуктивная нагрузка	а, при Т _ј = 125 °C	;)			
Время включения					
(V_{CC} = 600 B, V_{GE} = \pm 15 B, I_{C} = 400 A, R_{G} = 1.8 Om)					
при T _j = 25 °C	t _{d(on)}	-	0.25	-	
при T _j = 125 °C		-	0.30	-	14170
Время нарастания					MKC
(V_{CE} = 600 B, V_{GE} = \pm 15 B, I_{C} = 400 A, R_{G} = 1.8 Om)					
при T _j = 25 °C	t _r	-	0.09	-	
при Т _ј = 125 °C		-	0.10	-	

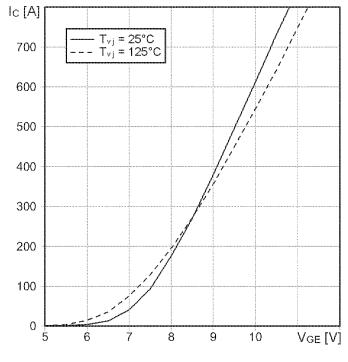

Наименование параметра	Условное	Значение параметра			Единица
	обозначение	мин.	тип.	макс.	измерения
Время задержки выключения					
$(V_{CE}$ = 600 B, V_{GE} = ± 15 B, I_{C} = 400 A, R_{G} = 1.8 Om)	4				
при Т _ј = 25 °C	$t_{d(off)}$	-	0.55	-	
при Т _ј = 125 °C		-	0.65	-	мкс
Время спада					IVING
$(V_{CE} = 600 \text{ B}, V_{GE} = \pm 15 \text{ B}, I_{C} = 400 \text{ A}, R_{G} = 1.8 \text{ Om})$	t _f				
при T _j = 25 °C	Lf	-	0.13	-	
при T _j = 125 °C		-	0.18	-	
Энергия потерь при включении					
$(V_{CC}$ = 600 B, V_{GE} = \pm 15 B, I_{C} = 400 A, R_{G} = 1.8 Ом, T_{J} = 125 °C, L_{S} = 85 нГн, за один импульс)	E _{on}	-	33	-	мПж
Энергия потерь при выключении					- мДж
$(V_{CC}$ = 600 B, V_{GE} = \pm 15 B, I_{C} = 400 A, R_{G} = 1.8 Ом, T_{j} = 125 °C, L_{S} = 85 нГн, за один импульс)	E _{off}	-	59	-	
Ток короткого замыкания					
(tp \leq 10 MKC, V_{CC} = 900 B, V_{GE} = \pm 15 B, V_{CEmax} = V_{CES} - $L_{\sigma(CE)} \times di/dt$, T_j = 125 °C)	I _{sc}	-	1.6	-	kA
Характеристики диода обратного тока					
Прямое падение напряжения ($I_F = 400 \text{ A}, V_{GE} = 0 \text{ B}$)					
при Т _ј = 25 °C	V_{F}	-	1.65	2.15	В
при Т _ј = 125 °C		-	1.65	-	
Ток обратного восстановления (I_F = 400 A, V_{GE} = -15 B, V_R = 600 B, di_F/dt = -4000 A/мкс)					
при T _j = 25 °C	I _{RM}	-	280	-	Α
при Т _ј = 125 °C		-	360	-	
Заряд обратного восстановления (I_F = 400 A, V_{GE} = -15 B, V_R = 600 B, di_F/dt = -4000 A/мкс)					
при T _j = 25 °C	Q _{rr}	-	40	-	мкКл
при Т _ј = 125 °C		-	75	-	
Энергия потерь при обратном восстановлении					
(I_F = 800 A, V_{GE} = -15 B, V_R = 600 B, di_F/dt = -4000 A/mkc)	_				,, n
при Т _ј = 25 °C	E _{rec}	-	18	-	мДж
при Т _ј = 125 °C		-	34	-	

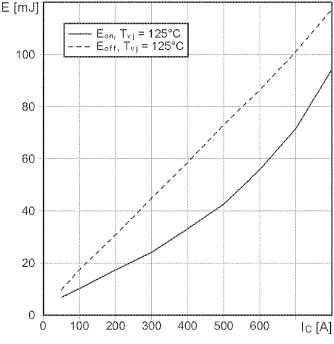

Типовые выходные характеристики $I_C = f(V_{CE})$

Режим измерения: V_{GE} = +15 B, T_j = 25, 125 °C

Типовые выходные характеристики $I_C = f(V_{CE})$

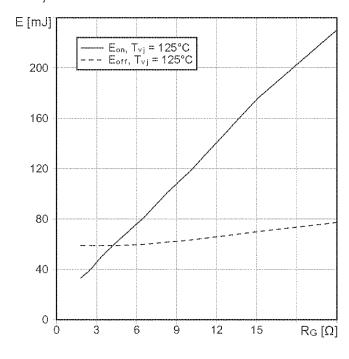
Режим измерения: $T_i = 125 \, ^{\circ}\text{C}$

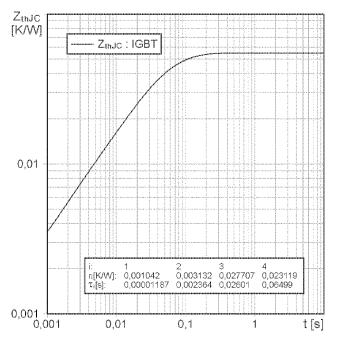




Типовые передаточные характеристики $I_C = f(V_{GE})$

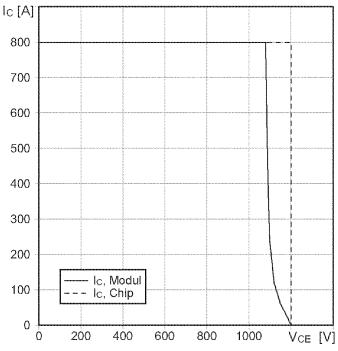
Режим измерения: V_{CE} = 20 B, T_j = 25, 125 °C

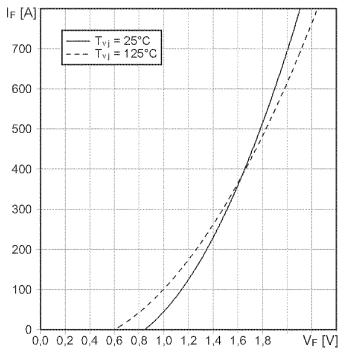

Типовые зависимости коммутационных потерь E_{off} = $f(I_C)$, E_{on} = $f(I_C)$, индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = \pm 15 B, $R_{G(on)}$ = 1.8 OM, $R_{G(off)}$ = 1.8 OM, T_j = 125 °C



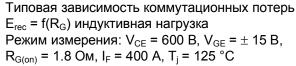
Типовая зависимость коммутационных потерь E_{off} = $f(R_G)$, E_{on} = $f(R_G)$, индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = \pm 15 B, T_i = 125 °C

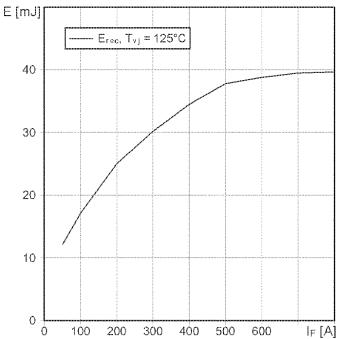
Переходное тепловое сопротивление,IGBT Z_{thjc} = $f(t_p)$

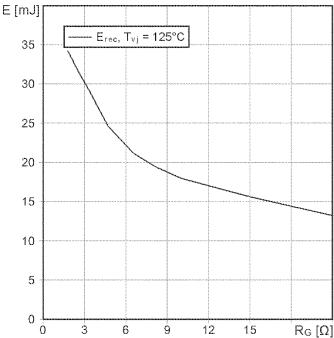


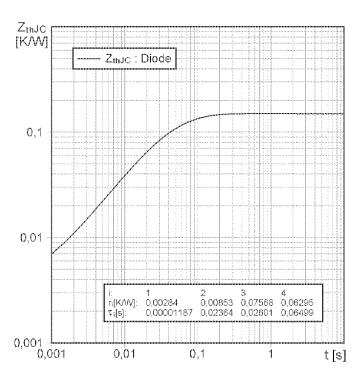


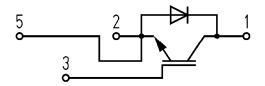
Обратная область безопасной работы


 I_C = f(V_{CE}) Режим измерения: $R_{G(off)}$ = 1.8 Oм, V_{GE} = \pm 15 B, T_i = 125 °C Типовые прямые характеристики диода обратного тока $I_F = f(V_F)$


Режим измерения: $T_i = 25$, $125 \, ^{\circ}$ C




Типовая зависимость коммутационных потерь E_{rec} = f(I_F) индуктивная нагрузка Режим измерения: V_{CE} = 600 B, V_{GE} = \pm 15 B, T_i = 125 °C



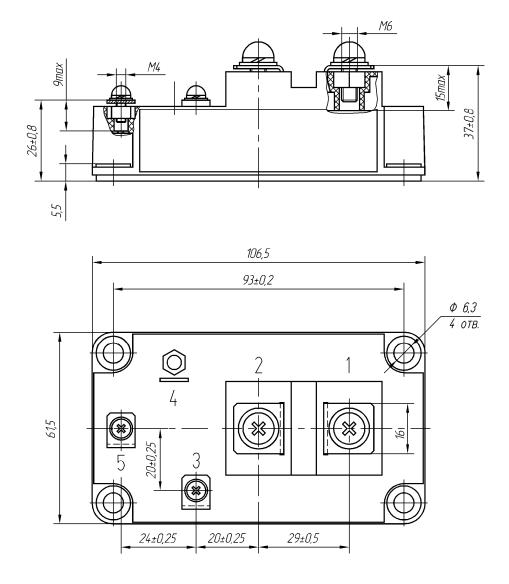

Переходное тепловое сопротивление, Диод Z_{thjc} = $f(t_p)$

СХЕМА ЭЛЕКТРИЧЕСКАЯ ПРИНЦИПИАЛЬНАЯ

ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ

Масса 0.35 кг

Январь 2009 МТКИ-400-12К.doc стр. 7