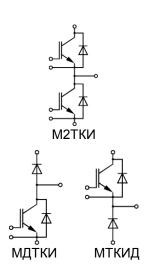
IGBT МОДУЛИ

М2ТКИ-300-17К / МДТКИ-300-17К / МТКИД-300-17К

Предварительная информация

ОСОБЕННОСТИ

- ◆ полумост / чоппер
- ◆ кристаллы IGBT IV поколения с вертикальным каналом (trench gate)
- встроенные быстродействующие диоды обратного тока / диоды чоппера (EmCon Fast diodes)
- ♦ сверхнизкие потери в открытом состоянии
- ♦ корпус с изолированным основанием
- ◆ диагностические выводы коллектора для контроля V_{CE}


ОБЛАСТИ ПРИМЕНЕНИЯ

- преобразователи частоты
- источники бесперебойного питания
- сварочное оборудование
- ПСН подвижного состава железных дорог

ОСНОВНЫЕ ПАРАМЕТРЫ

- ♦ V_{CES} = <u>1700 B</u>
- ♦ $I_C = 300 \text{ A} (T_C = 80 \, ^{\circ}\text{C})$
- ♦ V_{CEsat} = <u>**2.0 В**</u> (тип.)
- ♦ I_{C Puls} = <u>**600 A**</u>

МАКСИМАЛЬНО ДОПУСТИМЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ

Наименование параметра	Условное обозначение	Значение параметра	Единица измерения	
Напряжение коллектор-эмиттер	V _{CES}	1700	В	
Напряжение затвор-эмиттер	V _{GES}	± 20	D	
Постоянный ток коллектора				
при $T_C = 25$ °C	I _C	535		
при T _C = 80 °C		300		
Импульсный ток коллектора (t_p =1мс, T_C = 80 °C)	I _{Cpuls}	600	Α	
Постоянный прямой ток диода обратного тока / диода чоппера	I _F / I _{FC}	300		
Повторяющийся импульсный прямой ток диода обратного тока / диода чоппера (t_p =1мс)	I _{FRM} / I _{FRMC}	600		
Защитный показатель (V_R = 0 B, t_p = 10 мс, T_j = 125 °C)	l ² t	13.5	кА ² с	
Суммарная мощность рассеивания (на один ключ, T_{C} = 25 °C), IGBT	P _{tot}	1470	Вт	
Максимальная температура перехода	T _j	+ 150	°C	
Температура хранения	T _{stg}	- 50+ 125		
Напряжение изоляции (t = 1 мин.)	V _{isol}	4000	В (эфф)	

Предварительная информация

ТЕПЛОВЫЕ ПАРАМЕТРЫ

Наименование параметра	Условное обозначение	Значение параметра	Единица измерения
Тепловое сопротивление переход-корпус, IGBT (на один ключ)	R _{thjc}	≤ 0.085	
Тепловое сопротивление переход-корпус, диод обратного тока / диод чоппера (на один ключ)	R _{thjcD} / R _{thjcDC}	≤ 0.13	°С/Вт
Тепловое сопротивление корпус-охладитель, λ_{paste} = 1 Вт/м ·°C, на модуль (типовое значение)	λ _{paste} = 1 Bτ/м ·°C, R _{thck}		

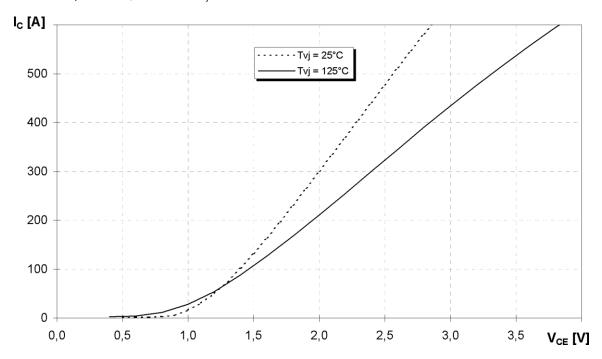
ЭЛЕКТРИЧЕСКИЕ ХАРАКТЕРИСТИКИ (при 25 °C, если не указано иное значение)

Наименование параметра	Условное обозначение	Значение параметра			Единица
		мин.	тип.	макс.	измерения
Статические характеристики					
Пороговое напряжение затвор-эмиттер $(V_{GE} = V_{CE}, I_C = 12 \text{ мA})$	V _{GE(th)}	5.2	5.8	6.4	
Напряжение насыщения коллектор-эмиттер $(V_{\text{GE}} = 15 \text{ B, } I_{\text{C}} = 300 \text{ A})$	V _{CEsat}				В
при T _j = 25 °C		-	2.00	2.45	
при T _j = 125 °C		-	2.40	-	
Ток утечки коллектор-эмиттер (V_{CE} = 1700 B, V_{GE} = 0 B) при T_j = 25 °C	I _{CES}		-	5.0	мА
Ток утечки затвор-эмиттер (V_{GE} = 20 B, V_{CE} = 0 B)	I _{GES}	-	-	400	нА
Характеристики на переменном токе					
Заряд затвора (V _{GE} = -15+15 В)	Q_G	-	3.4	-	мкКл
Входная емкость (V_{CE} = 25 B, V_{GE} = 0 B, f = 1 МГц)	C _{ies}	1	25	-	нФ
Обратная переходная емкость (V_{CE} = 25 B, V_{GE} = 0 B, f = 1 МГц)	C _{res}	C _{res} - 0.9	0.9	-	
Характеристики переключения (индуктивная нагрузка	, при Т _ј = 125 °C	;)			
Время задержки включения					
$(V_{CC}=900~B,V_{GE}=\pm~15~B,I_{C}=300~A,R_{G}=4.7~O\text{M})$	t _{d(on)}				
при T _j = 25 °C		-	0.28	-	
при T _j = 125 °C		-	0.33	-	МКС
Время нарастания					IVING
$(V_{CC}=900~B,V_{GE}=\pm~15~B,I_{C}=300~A,R_{G}=4.7~O\text{M})$	+				
при T _j = 25 °C	t _r	-	0.10	-	
при T _j = 125 °C			0.10		

IGBT МОДУЛИ

М2ТКИ-300-17К / МДТКИ-300-17К / МТКИД-300-17К

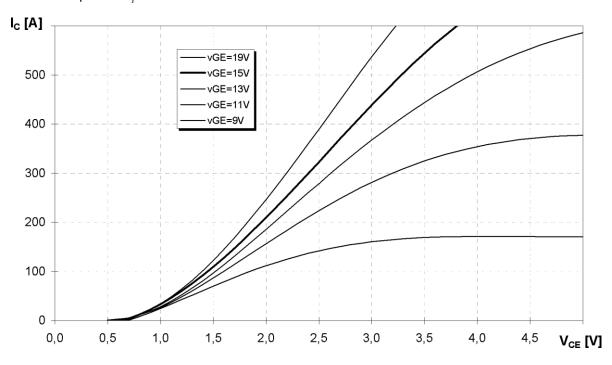
Предварительная информация


Время задержки выключения					
$(V_{CC} = 900 \text{ B}, V_{GE} = \pm 15 \text{ B}, I_C = 300 \text{ A}, R_G = 4.7 \text{ OM})$	$t_{d(off)}$		0.05		
при Т _j = 25 °C при Т _i = 125 °C	, ,	-	0.85 1.00	-	
Время спада			1.00		MKC
$(V_{CC} = 900 \text{ B}, V_{GE} = \pm 15 \text{ B}, I_C = 300 \text{ A}, R_G = 4.7 \text{ OM})$	4				
при T _j = 25 °C	t _f	-	0.12	-	
при T _i = 125 °C		-	0.20	-	
Энергия потерь при включении					
$(V_{CC} = 900 \text{ B}, V_{GE} = \pm 15 \text{ B}, I_C = 300 \text{ A}, R_G = 4.7 \text{ OM}, L_S=60 нГн, за один импульс})$	E _{on}				
лри $T_i = 125 ^{\circ}\text{C}$		-	115	-	-
Энергия потерь при выключении					мДж
$(V_{CC} = 900 \text{ B}, V_{GE} = \pm 15 \text{ B}, I_{C} = 300 \text{ A}, R_{G} = 4.7 \text{ OM},$	E _{off}				
L _S =60 нГн, за один импульс)	-011		0.5		
при T _i = 125 °C		-	95	-	
Ток короткого замыкания			4400		٨
$(tp \le 10 \text{ MKC}, V_{CC} = 1000 \text{ B}, V_{GE} = \pm 15 \text{ B}, V_{CEmax} = V_{CES} - \frac{1000 \text{ C}}{1000 \text{ C}}$	I _{SC}	-	1100	-	Α
$L_{\sigma(CE)} \times di/dt, T_j = 125 ^{\circ}C)$					
Внутренняя индуктивность модуля по цепи коллектор-	$L_{\sigma(CE)}$	-	20	-	нГн
эмиттер	,				
Внутреннее сопротивление модуля (кристалл – силовые вывода), $T_C = 25$ °C	R _{CC'/EE'}	-	0,60	-	мОм
Характеристики диода обратного тока / диода чоппе	pa				
Прямое падение напряжения (I _F = 300 A, V _{GE} = 0 B)					
при T _i = 25 °C	V _F / V _{FC}	-	1.8	2.2	В
при Т _i = 125 °C	, , , ,	_	1.9	_	
Ток обратного восстановления (I _F = 300 A,					
$V_{GE} = -15 \text{ B}, V_{R} = 900 \text{ B}, \text{ di}_{F}/\text{dt} = -3500 \text{ A/mkc})$					
	I _{rr} / I _{rrC}		000		Α
при Т _j = 25 °С		-	330	-	
при T _j = 125 °C		-	350	-	
Время обратного восстановления ($I_F = 300 \text{ A}$,	t _{rr} / t _{rrC}	_	0.72	_	МКС
$V_{GE} = -15 \text{ B}, V_{R} = 900 \text{ B}, di_{F}/dt = -3500 \text{ A/MKC}, T_{j} = 125 °C)$	rr / rrC		0.72	_	IVING
Заряд обратного восстановления (I _F = 300 A,					
$V_{GE} = -15 \text{ B}, V_{R} = 900 \text{ B}, di_{F}/dt = -3500 \text{ A/mkc})$					
при T _i = 25 °C	Q_{rr} / Q_{rrC}	_	75	_	мкКл
при T _i = 125 °C		_	125	_	
			120		
Энергия потерь при обратном восстановлении (I _F =					
300 A, $V_{GE} = -15$ B, $V_{R} = 900$ B, $di_{F}/dt = -3500$ A/MKC)	E _{rec} / E _{recC}				мДж
при T _i = 25 °C	1000	I -	35	-	
при Т _i = 23 °C			70		

Предварительная информация

Типовые выходные характеристики

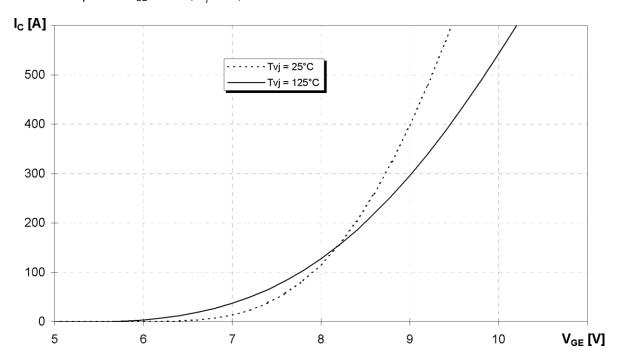
 $I_C = f(V_{CE})$


Режим измерения: V_{GE} = +15 B, T_i = 25, 125 °C

Типовые выходные характеристики

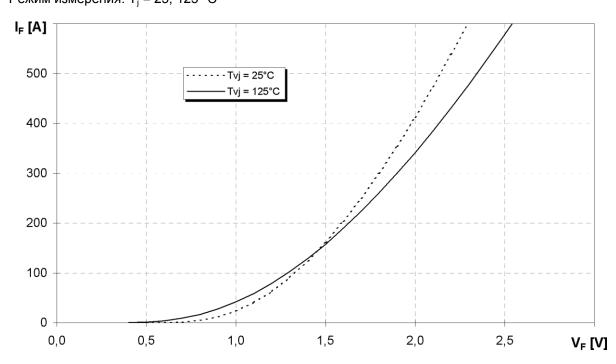
 $I_C = f(V_{CE})$

Режим измерения: T_i = 125 °C



Предварительная информация

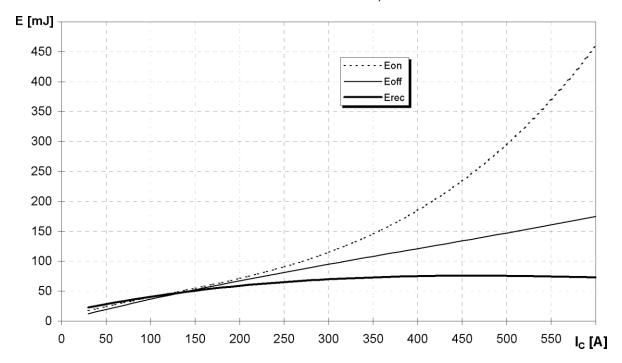
Типовые передаточные характеристики


 $I_C = f(V_{GE})$

Режим измерения: $V_{CE} = 20 \text{ B}, T_i = 25, 125 °C$

Типовые прямые характеристики диода обратного тока

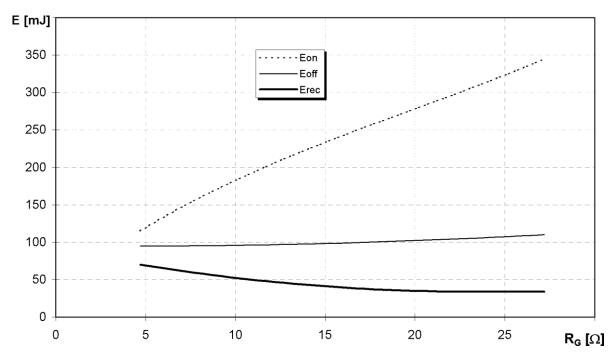
Режим измерения: T_i = 25, 125 °C



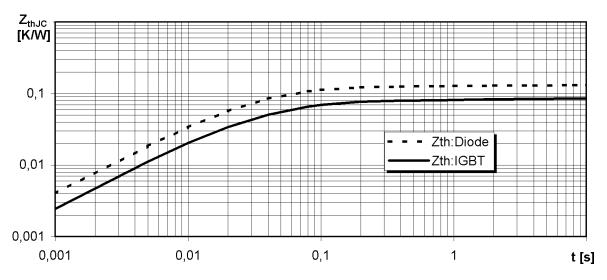
Предварительная информация

Типовые зависимости коммутационных потерь

 $E = f(I_C)$, индуктивная нагрузка

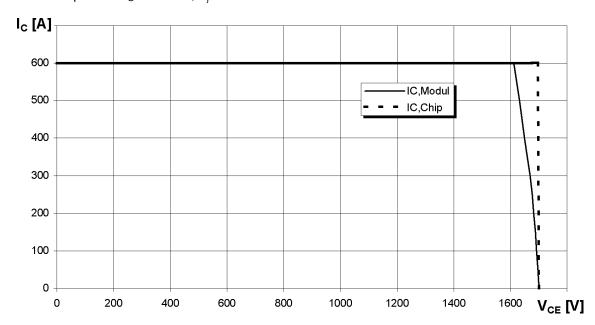

Режим измерения: V_{CE} = 900 B, V_{GE} = \pm 15 B, R_{G} = 4.7 Om, T_{i} = 125 °C

Типовые зависимости коммутационных потерь


 $E = f(R_G)$, индуктивная нагрузка

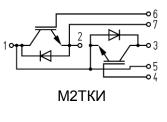
Режим измерения: I_C = 300 A, V_{CE} = 900 B, V_{GE} = \pm 15 B, T_C = 125 °C

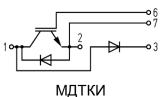
Предварительная информация

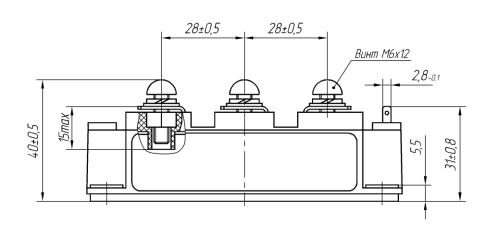

Переходное тепловое сопротивление $Z_{\text{thic}} = f(t_p)$

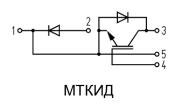
Обратная область безопасной работы

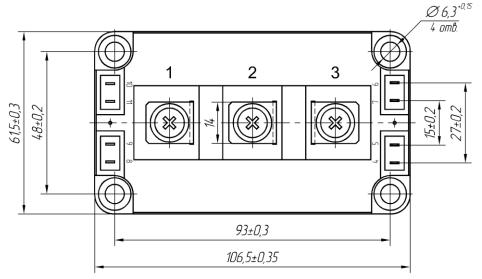
 $I_{C \text{ puls}} = f(V_{CE})$


Режим измерения: $R_G = 6.8$ Ом, $T_i = 125$ °C




Предварительная информация


СХЕМЫ ЭЛЕКТРИЧЕСКИЕ ПРИНЦИПИАЛЬНЫЕ


ГАБАРИТНЫЕ И УСТАНОВОЧНЫЕ РАЗМЕРЫ

Масса 0.35 кг

ПАО «ЭЛЕКТРОВЫПРЯМИТЕЛЬ»

оставляет за собой право в любое время вносить изменения без уведомления.

Россия, Мордовия, Саранск, 430001, ул. Пролетарская, 126

Телефон/Факс: +7 (8342) 48-07-33, 27-02-83 (маркетинг)

29-60-72, 29-68-29 (техническая поддержка)

E-mail: kb.igbt@elvpr.ru (техническая поддержка)

Internet: www.elvpr.ru